What is the Optimal Hematocrit on Bypass for Children?

Gina M Whitney, MD
Why Is This Important?

• Increasing evidence that RBC transfusion is associated with adverse clinical outcomes

• Need to balance risk of allogeneic RBC exposure with risks of anemia and inadequate oxygen delivery on CPB
Transfusion in Coronary Artery Bypass Grafting is Associated with Reduced Long-Term Survival

Colleen Gorman Koch, MD, MS, Liang Li, PhD, Andra I. Duncan, MD, Tomislav Mihaljevic, MD, Floyd D. Loop, MD, Norman J. Starr, MD, and Eugene H. Blackstone, MD

Departments of Cardiothoracic Anesthesia, Quantitative Health Sciences, and Thoracic and Cardiovascular Surgery, The Cleveland Clinic Foundation, Cleveland, Ohio

Fig 1. Frequency histogram displays the distribution of red cells transfused for the patient population.

(A) Days (y/day)
(B) Years after Isolated CABG
© 2006 by The Society of Thoracic Surgeons
Two ventricle repairs without arch reconstruction
 – April 1996 – July 2004
 – 270 patients
 – Looked at INTRAOPERATIVE blood products
 • 4-34 ml/kg LOW
 • 35-67 ml/kg MEDIUM
 • 68-364 ml/kg HIGH
 – Measured DMV
Competing Priorities

ENSURING ADEQUATE OXYGEN DELIVERY ON BYPASS

RISKS OF BLOOD PRODUCT EXPOSURE
Oxygen Consumption

\[V_{E}CO_2 \]

Free Water (ml/h)
\(K=6 \)

Cardiac Output (dL/min)
\(K=3 \)

\[kg^{3/4} \]

\[VO_2 \]

VO2: Anesthesia and Temperature

<table>
<thead>
<tr>
<th>Condition</th>
<th>VO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>37° Unanesthetized</td>
<td>4 ml/kg/min</td>
</tr>
<tr>
<td>37° Anesthetized</td>
<td>2-3 ml/kg/min</td>
</tr>
<tr>
<td>28° Anesthetized</td>
<td>1-2 ml/kg/min</td>
</tr>
</tbody>
</table>
Physiology of O_2 Delivery on CPB

$$DO_2 = C_aO_2 \times CO$$

$$= S_aO_2 \times 1.39 \times Hb \times \text{ARTERIAL FLOW RATE}$$
Adequate Oxygen Delivery

![Graph showing the relationship between Oxygen Transfer and Hemoglobin and Flow rate (Capiox SX18). The graph includes lines for different Hematocrit (HCT) levels: 36%, 24%, and 18%. The x-axis represents Flow Rate (L/min), and the y-axis represents Oxygen Transfer (mL/min). The graph highlights the impact of varying Hematocrit levels on Oxygen Transfer at different Flow Rates.](Image)
WHAT IS THE EVIDENCE?
The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: Results of a randomized trial in infants

- Infants <9 mos. F age undergoing biventricular repair randomized to CPB Hct 20% or 30%. N=147

<table>
<thead>
<tr>
<th></th>
<th>Low Hct (20%)</th>
<th>High Hct (30%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL HCT</td>
<td>21.5 ± 2.9%</td>
<td>27.8 ± 3.2%</td>
</tr>
<tr>
<td>NADIR CARDIAC INDEX</td>
<td>2.8 ± 1.1 L/min/m²</td>
<td>3.1 ± 1.1 L/min/m²</td>
</tr>
<tr>
<td>PSYCHOMOTOR DEVELOPMENT INDEX ≤ 70</td>
<td>16/56 (29%)</td>
<td>5/53 (9%)</td>
</tr>
<tr>
<td>MOTOR DEVELOPMENT INDEX ≤ 70</td>
<td>4/59 (7%)</td>
<td>2/53 (4%)</td>
</tr>
</tbody>
</table>
Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery

• Noted that adverse outcomes seen primarily at Hct <20% in the 2003 study.
• RCT of 124 infants Hct 25% v. 35%. Does higher Hct benefit patient?

<table>
<thead>
<tr>
<th></th>
<th>Low Hct (25%)</th>
<th>High Hct (35%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL HCT</td>
<td>24.8 ± 3.1%</td>
<td>32.6 ± 3.5%</td>
</tr>
<tr>
<td>PSYCHOMOTOR DEVELOPMENT INDEX ≤ 70</td>
<td>9/48 (19%)</td>
<td>10/58 (17%)</td>
</tr>
<tr>
<td>MOTOR DEVELOPMENT INDEX ≤ 70</td>
<td>1/47 (2%)</td>
<td>1/57 (2%)</td>
</tr>
</tbody>
</table>
• Used data collected during prior two RCT’s to look at relationship between Hct (continuous variable) and clinical outcomes

• Lowest safe level of hemodilution is based on overall CPB management strategy (temp, pH management)
The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials

A
Intraoperative Fluid Balance (mL) vs. Hematocrit at Onset of Low Flow (%)

B
Lactate 60' after Bypass (umol/L) vs. Hematocrit at Onset of Low Flow (%)

C
Psychomotor Development Index vs. Hematocrit at Onset of Low Flow (%)

D
Mental Development Index vs. Hematocrit at Onset of Low Flow (%)

P < .001
P = .08
P < .001, P = .42
P = .26

Children's Hospital Colorado
The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials

- Every 1 point increase in Hct associate with 11.8 ml decrease in intraoperative fluid balance
The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials

- Linear increase in PDI score with Hct up to 23.5%
- 1 point increase in Hct associated with 2.6 point increase in PDI score
What is the Optimal Hematocrit on Bypass for Children?

~23.5%

Based on the best available evidence. This number may be modified upward or downward as part of an overall bypass strategy.
Thank You!