Anesthesia for non-cardiac surgery in patients with a Berlin Heart

Laura K. Diaz, M.D.
The Children’s Hospital of Philadelphia
Department of Anesthesiology and Critical Care Medicine
Perelman School of Medicine at the University of Pennsylvania
Philadelphia, PA
I HAVE NO DISCLOSURES or COI
Objective

Discuss anesthetic management strategies for patients with a Berlin Heart undergoing non-cardiac surgeries
Berlin Heart EXCOR

- Paracorporeal pulsatile pump
 - Fixed rate, variable stroke volume
 - Sizes 10-80 ml (US 10, 25, 30, 50 ml)
Berlin Heart EXCOR use

- Pump failure failing medical management
 - Cardiomyopathy/myocarditis
 - Congenital heart disease
 - Failure to wean from CPB
 - Conversion from ECMO
 - Transplant failure

- RVAD/LVAD/BiVAD support
 - Bridge to recovery or transplant
 - Placed utilizing CPB with closure of shunts
 - Few size limitations
 - Extubation, enteral feeding, ambulation
Increased usage of Berlin Heart

![Graph showing the number of implantations of EXCOR® Pediatric patients (n=1180) from 1999/00 to 2011/12. The number of implantations increased from 13 in 1999/00 to 377 in 2011/12.](www.berlinheart.de)
Implantation age distribution

Age distribution of EXCOR® Pediatric patients (n=1261).

www.berlinheart.de
Post implantation surgeries

• Cardiac/VAD related surgeries
 • Mediastinal exploration
 • Pump change: non-emergent vs. emergent
 • Thrombus
 • Upsizing of pump
 • Cardiac cath lab

• Common non-cardiac surgeries
 • PICC or tunneled central line
 • Radiologic procedures: CT scan (no MR!!!)
 • ENT: trach, bronchoscopy
PREOPERATIVE considerations

• Medical/surgical history and current issues
• Medications and anticoagulation protocols
• Laboratory studies including echo
• Blood product availability
• Transport/location of procedure
Current medical issues

• Cardiac indication and goal for support
 • Recovery vs. transplant

• Multi-organ system failure
 • Present or resolving hepatic or renal dysfunction
 • Ventilator dependency

• LVAD vs. BiVAD patients
 • RV support is crucial for LVAD patients
 • Consider perioperative use of milrinone
 • Availability of nitric oxide in OR
Current medications

• Anticoagulation
 • Heparin, LMWH, coumadin, antiplatelet drugs

• Cardiac
 • Inotropes: dopamine, milrinone
 • ACE inhibitors
 • B blockers

• Respiratory
 • Nitric oxide

• Antibiotics

• Sedative/analgesic drugs
• Heparin infusion 24 hrs post implant if no bleeding
 • 10-15 U/kg/hr: target PTT 60-85 sec
 • Target ATIII activity > 70%: FFP if necessary

• Conversion to LMWH (< 1 yr)
 • Target Anti Factor Xa level: 0.6-1 IU/ml

• Conversion to Vitamin K antagonist (> 1 yr)
 • Target INR: 2.7-3.5

• Antiplatelet therapy: ASA, dipyridamole
 • Platelet inhibition, TEG followed
Anticoagulation status

- Current anticoagulation protocol
- Current labs
 - CBC, platelet count, INR, PT/PTT, Anti factor Xa
 - TEG
- Consensus between surgeon, anesthesiologist, intensivist/hematologist for perioperative management and transfusion parameters
- Most often conversion to heparin infusion
 - Discontinuation two hours preoperatively
Anticoagulation monitoring

• Daily:
 • aPTT, ATIII, fibrinogen, platelet count, D-dimer
 • INR
 • Anti Xa level

• As needed or available:
 • Platelet aggregation (keep < 30% normal)
 • TEG

• Infected patients may require higher doses of anticoagulation
Patient transport

• Designate person in charge
• Anesthesia team
• VAD specialist: perfusionist or Berlin Heart trained RN
• Respiratory therapist
• Bedside RN
• Extra personnel for IV pole management
• Planning for multi-location procedures
ANESTHETIC considerations

• Airway management
• Vascular access/monitoring
• Induction/maintenance
• Potential issues
• Pump emergencies
• Post-operative management
Airway management

• Current airway status
• Nitric oxide being utilized?
 • Plan for availability even if not currently utilized
• Natural airway/spontaneous ventilation may offer advantages
 • Hypercarbia resulting in increased PVR, decreased RV output can result in LVAD failure
• Post-operative airway management

Duff et al Resuscitation 2013; 84:702-5
Vascular access/monitoring

• Adequate access for volume administration is essential
 • PICC line or tunneled central lines frequently present
 • PIV placement may be challenging

• Arterial access
 • Patient condition/surgical procedure considered

• Risk of CVL placement/air entrainment
 • Negative pressure generated by pump may easily entrain air during line placement
 • Anti-siphon valves for indwelling central lines
• Useful for evaluation of
 • Volume status/preload
 • RV dysfunction
 • Positioning of cannulas
Induction/maintenance

• **Most important principle**: maintenance of SVR and volume status

• Induction
 • Ketamine least likely to result in hypotension
 • Remifentanil associated with hypotension

• Maintenance
 • Hypotension during maintenance of anesthesia not significantly associated with any particular technique
 • Larger doses of volatile or intravenous agents were associated with hypotension

Cave et al Ped Anesth 2010; 20:647-59
Potential issues

- Hypotension/hypovolemia
- RV strain/failure in LVAD patient
- Dysrhythmias/bradycardia in LVAD patient
- Pump failure/loss of cardiac output
Management of hypotension

• Assessment of volume status
 • Pump membrane wrinkled during diastole?
• Fluid bolus 10 cc/kg generally effective
• Use of phenylephrine bolus or norepinephrine infusion for persistent hypotension
 • Patients on preoperative inotropes less likely to experience hypotension on induction *(Cave et al)*
• Manipulation of pump settings
 • Increase rate or manipulate systole/diastole intervals
Pump visualization

- Clear drapes should be utilized
 - Inspect drive lines for kinking
 - Mirror to evaluate underside of pump
 - Evaluate filling and ejection of pump
 - Wrinkling of membrane indicates hypovolemia
- Signs of thrombus
 - Availability of Berlin specialist/CT surgery
Inadequate perfusion or circulatory arrest

- **Evaluate pump first!**
 - Obstruction or kinks in inflow/outflow cannulae
 - Thrombosis - call CT surgery
 - Disconnection – call CT surgery
 - Power/battery failure – hand crank

- Changes in preload/contractility/afterload
 - LVAD patients particularly vulnerable

- Respiratory failure/hypoxemia/hypercarbia
 - Resultant pulmonary hypertension can affect output
Treatment

- **NO PULSE/FLOW noted with pulse check**
 - Support airway if not intubated
 - Call specialist if not present; evaluate pump
 - Utilize hand crank for power failure

- **NO PULSE/FLOW with hand crank**
 - Begin CPR

- **PULSE/FLOW present**
 - Support airway if not intubated
 - Evaluate potential etiologies
Postoperative issues

• Airway management
• Pain/sedation management
• Resumption of anticoagulation protocols
Institutional experiences

- **Edmonton:** Cave et al, *Ped Anesth* 2010; 20:647
 - 11 patients, 29 non-cardiac procedures

 - 21 patients, 62 non-cardiac procedures

- **Newcastle upon Tyne:** Haynes et al, *Ped Anesth* 2010; 20:1137
 - 40 patients, 77 VAD related and non-cardiac procedures

- **GOS:** Pratap et al, *Ped Anesth* 2010; 20:812
 - 23 patients, 26 VAD related and non-cardiac procedures
Key concepts

• Decreases in SVR are poorly tolerated
 • Volume infusion first line of therapy
 • Availability of phenylephrine, norepinephrine

• RV support is critical in LVAD patients
 • Nitric oxide
 • Milrinone
 • Treatment of dysrhythmias or bradycardia

• Discuss transfusion parameters

• Defibrillation can be performed if necessary
Controversies

• Who cares for these patients?
 • Pediatric cardiac anesthesiologists
 • Pediatric anesthesiologists
 • Intensivists

• Availability of pump trained personnel
 • Perfusionist vs. Berlin Heart trained RN
 • Continuously present or available?

• Performance of CPR with a Berlin Heart in place
www.berlinheart.de

• Sign up for “medical professional” use on website
• Strongly suggest reading and/or printing “Instructions for Use”