Cardiopulmonary Bypass:
Current State-of-the-Art & New Development

Congenital Cardiac Anesthesia Society
Las Vegas, NV
March 2013

Colleen Gruenwald
PhD, MHSc, RN, CCP, CPC
Toronto, Canada
I have no disclosures to declare.
Objectives… with the focus on infants

- Current trends in pediatric CPB management
 “BLOODLESS PEDIATRIC HEART SURGERY”

- Therapeutic interventions that ameliorate the adverse effects of CPB

- New and evolving CPB technologies & techniques
Bloodless Pediatric Heart Surgery

THE CHALLENGE

Complex operations on small hearts

- Significant risk independent of blood conservation
- Cyanotic heart lesions

Consequences of cardiopulmonary bypass

- Dilution
- Anticoagulation
- Inflammatory response
- Coordination of multiple disciplines
- Legal, ethical and medical bias issues
Bloodless Pediatric Heart Surgery

TEAM EFFORT – 1st STEP

- Family
- Cardiology
- Surgeon
- Anesthesiology
- Perfusion
- Nursing
- Laboratory-Blood Bank
- Intensive Care Unit
- Administrative/Program

Communication
Coordination
Commitment
Bloodless Pediatric Heart Surgery

Diagnosis (pre-op)
- Timing of procedure (pt size vs circuit volume)
- Iron supplementation

Surgery (intra-op)
- Antifibrinolytics (tranexamic acid, amicar)
- Pre-bypass (phlebotomy)
- Bypass techniques
- Surgical techniques (meticulous)

ICU (post-op)
- Continued program goals
- Blood sampling, non-invasive monitors
Transfusion-free surgery in neonates is usually not possible due to hemodilution.

- Large prime volume
- Pt Small blood volume
- Immature hemostatic system (50% proteins)
- ↑ Inflammatory response to surgery
Bloodless Pediatric Heart Surgery

Transfusion in neonates…

Results in:
Higher rates of morbidity and mortality in neonates than in older children and adults…
Reasons to Avoid Blood Transfusion

- Risks of transfusions
- Unclear efficacy of transfusions to attain goals of reduced morbidity & mortality in certain settings
- Blood is a rare, expensive resource
- Personal, ethical, religious beliefs
Adverse effects of Blood Transfusion

- Infectious transmission
 - Bacterial, viral
- Transfusion related acute lung injury
- Inflammatory response
- Immunologic compromise
- Graft vs host disease
- Volume overload
- Stroke
 (Major or minor transfusion reaction)
Bloodless Pediatric Heart Surgery

Predictors of:
Red Cell (RC) Transfusion
- Pre-operative hematocrit
 - Low hemoglobin **
 Redlin, JTCVS, 2011
- Longer CPB and x-clamp times, DHCA
 - complex surgical repairs
- Age and weight at time of surgery
 Szekely, ATS 2009
 Miyaji, Int Heart J 2009
 Hornykewycz Ped Anaes 2009
 Ootaki, JTCVS 2004

Predictors of:
Platelet Transfusion
- Pre-operative hematocrit
 - High hemoglobin
- Longer CPB and x-clamp times, DHCA
 - complex surgical repairs
- Age and weight at time of surgery
- Larger doses of heparin
 Petaja, JTCVS 1995
Bloodless Pediatric Heart Surgery

Red Cell Transfusion

Indications
- “Ideal” hemoglobin
 - Specific value, target
- Acute hemorrhage/anemia
- Evidence of inadequate tissue O_2 delivery with normovolemia

Goals
- ↑ Patient’s hemoglobin
- Improve oxygen delivery and tissue perfusion

Objective = ↓ morbidity and mortality

HOWEVER....
Bloodless Pediatric Heart Surgery

Morbidity and Mortality of Blood Transfusion

“Potential detrimental effects of allogeneic blood transfusion is increasingly understood”

- Children undergoing cardiac surgery are the greatest paediatric users of RC transfusions
 Keung, Ped Anes 2009
- RC transfusion in critically ill children is independently associated with prolonged mechanical ventilation, inotropic requirement, ICU stay and increased mortality
 Kneyber, Intensive Care Med 2007
- Effect of blood transfusion on long-term survival after cardiac operation
 Engoren, Ann Thorac Surg 2002
Bloodless Pediatric Heart Surgery

Interventions: Age of Blood

Infants
- RFWB <48 hours old used in prime & 24 hours in neonates significantly improves clinical outcomes
 Gruenwald, JTCVS 2008

Children
- RCs >4 days old used in prime – increased morbidity
 Ranucci, Critical Care 2009

Adults
- RCs >14 day old is associated with significant increased risk of postoperative complications including mortality
Age of Blood

“RBC Storage Lesions” occur in both.....

Supernatant

- Inflammatory mediators (cytokines, iron, micro-particles containing lipids)

Within RBC

- Loss of 2,3 DPG, ATP
- Deformability
- Diminished oxygen transport
- Increased adhesiveness
- Decreased overall viability

Therefore, washing blood does not remove all of these concerns...
Bloodless Pediatric Heart Surgery

Age of Blood – Effect on Chest Tube Volume Loss

Retrospective review of 1225 consecutive cardiac surgeries at SickKids from 2004 to 2007

Manlhiot, Soc of Thorac Surg 2011
Association Between Average Age of RBC Transfusion and Surgical Outcomes

(Patients transfused either >4 units of RBC’s or >150ml/kg RBC’s)

<table>
<thead>
<tr>
<th></th>
<th>EST (SE)</th>
<th>OR (95% CI)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inotrope scores 6-12 hrs</td>
<td>+0.067 (0.022)</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Inotrope scores 12-24 hrs</td>
<td>+0.081 (0.021)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Inotrope scores 24-48 hrs</td>
<td>+0.068 (0.018)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Chest tube loss (ml/kg)</td>
<td>+1.499 (0.340)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Intubation (days)</td>
<td>+0.263 (0.086)</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>ICU stay (days)</td>
<td>+0.192 (0.109)</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>+0.303 (0.132)</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Major bleeding complications</td>
<td>1.029 (0.998-1.062)</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>Renal insufficiency/failure</td>
<td>1.085 (1.034-1.138)</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Liver insufficiency/failure</td>
<td>1.087 (0.999-1.184)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Early unplanned reoperation</td>
<td>1.040 (1.000-1.082)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>In hospital mortality</td>
<td>1.054 (1.005-1.106)</td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>
Bloodless Pediatric Heart Surgery

Percent Survival with Age of Blood

- 100 ml/kg, average age: 10 days
- 100 ml/kg, average age: 25 days
- 100 ml/kg, average age: 40 days

p < 0.001
FRESH WHOLE BLOOD (FWB)

RCT Infants < 2 years

- Use of FWB - less post-operative bleeding than component therapy [Manno CS, Blood 1991]

HOWEVER...

- FWB generally not available today
Bloodless Pediatric Heart Surgery

Reconstituted Fresh Whole Blood Study

Neonates < 1 month, Single center, RCT 2001-2005

RFWB group - significant results

- Fewer donor exposures (study design)
- Lower chest tube losses over first 24 hours
- Shorter ventilation time and hospital LOS
- Lower inotropic support scores at 24 hours

Gruenwald, JTCVS 2008
Bloodless Pediatric Heart Surgery

Independent effect on post-operative outcome

Factors associated with higher chest tube loss 24 hours
- Lower platelet count: $-0.0026 (0.0004)$, $p<0.0001$
- Older age of blood: $0.0120 (0.0010)$, $p<0.0001$
- Higher number of exposures: $0.0241 (0.0024)$, $p=0.06$

Factors associated with longer duration of ventilation
- Lower platelet count: $-0.0041 (0.0002)$, $p<0.0001$
- Older age of blood: $0.0129 (0.0005)$, $p<0.0001$
- Higher number of exposures: $0.0206 (0.0012)$, $p<0.0001$
Bloodless Pediatric Heart Surgery

Technologies & Techniques:
Minimized CPB Circuit

Smaller devices available today
- remote/pump heads close to patient
- oxygenator with integral arterial filter

Techniques:
ANH - acute normovolemic hemodilution
VAD - vacuum-assisted drainage
VAP - venous antegrade prime
RAP - retrograde arterial prime
Hemoconcentration & Cell Salvage
Diameter and length of tubing?

Olshove JECT 2010
Bloodless Pediatric Heart Surgery

Berlin Heart Centre – neonates

1st series (n=13) Koster JTCVS 2009
2nd series ASO (n=23) Redlin JTCVS 2011

- Asanguineous prime (1st series: 200ml, 2nd series: 100ml)
- Hypothermia 26-28°C
- Flow rates of 2.5 – 3.0L/min/m² with VAD
- Transfusion trigger (lower than current practice)
 - Hgb 7g/dl CPB, 8-10g/dl post-CPB, 12-16g/dl cyanotic
- Controlled monitoring (NIRS)
 - regional oxygenation of brain & lower body
- Circuit volume processed post CPB (cell-saver)
Bloodless Pediatric Heart Surgery

Minimized CPB Circuit – 100ml Prime

It can be done with a team approach…

Achieved (23 neonates 2.7 – 3.2 kg - ASO)

- 6 patients – intra and post-op transfusion
- 11 patients – no intra-op but ICU transfusion
- 6 patients – no transfusion
- 3 patients – FFP also transfused

Outcome (similar between groups)

- ICU stay & ventilation
- Post-op & wound infection
- Inflammatory response
- Mortality
Bloodless Pediatric Heart Surgery

Other Recent Investigators

- Perfusion strategies for blood conservation in pediatric cardiac surgery
 - Durandy, World J Cardiol 2010

- Specific requirements for bloodless cardiopulmonary bypass in neonates and infants
 - Golab, Perfusion 2010

- Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight
 - Myaiji, JTCVS 2007
Benefits of minimized primes…

- Dilution of hemoglobin, platelets & coagulation factors

- Reduction priming volume – ameliorate inflammatory response independent from blood transfusion

 *Myaiji, Int Heart J 2009,
 Fukumura, J Art Organs 2004*

- Reduced need for blood transfusion while maintaining tissue oxygenation and patient safety

 Redlin, JTCVS 2011
Bloodless Pediatric Heart Surgery

The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: Results from the combined Boston hematocrit trials

Conclusions: hemodilution may vary with diagnosis, age at operation, CPB strategies (pH, flow, temperature etc.) Therefore, the study could not recommend a universally “safe” hemodilution level.....

Linear correlation between psychomotor development and HCT between 15-24% (low flow, 18°C CPB)
Bloodless Pediatric Heart Surgery

Considerations

The **most** important outcome measure for parents and their child...

NORMAL MENTAL & PSYCHOMOTOR DEVELOPMENT
Bloodless Pediatric Heart Surgery

Future…

- Debate continues – **Optimal Perfusion**
 - Further investigation is required to assess the “critical HCT as well as other perfusion variables” as a trigger for transfusion (with current practice)
 - Follow-up studies are needed – Does reduced transfusion result in better long-term outcomes?

- We should advocate for the freshest blood
 - Whole blood may be the best option if available

- We should challenge ourselves
 - Mini bypass circuitry/reduce transfusion
 - Encourage technology development and innovation

- And finally…work as a TEAM!
Bloodless Pediatric Heart Surgery

Thank you